Hamiltonian mechanics

Sample results

Pseudo-holomorphic curves

A glimpse at symplectic geometry and pseudo-holomorphic curves

Michael B. Rothgang (he/him)

Symplectic geometry group Humboldt-Universität zu Berlin

European Research Council Established by the European Commission

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

BMS-BGSMath Junior Meeting September 7, 2022

Introduction	Hamiltonian mechanics	Sample results	Pseudo-holomorphic curves
●000000	0000	0000	
Three motiv	ating questions		

Question 1: dynamical systems

What can we say about periodic orbits of a mechanical system (e.g. double pendulum, the solar system)?

Question 2: symplectic fillings

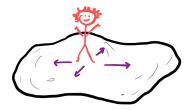
When is a smooth manifold the boundary of a compact manifold?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Question 3: moduli spaces

What does the solution space to an elliptic PDE look like?

Introduction	Hamiltonian mechanics	Sample results	Pseudo-holomorphic curves
0●00000	0000	0000	
Manifolds			



Introduction 0●00000	Hamiltonian mechanics 0000	Sample results	Pseudo-holomorphic curves
Manifolds			
	year.		

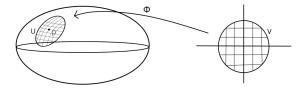


◆□▶ ◆□▶ ◆目▶ ◆目▶ ④○♡

surface of a potato is a manifold: locally looks like a disk

Introduction 000000	Hamiltonian mechanics 0000	Sample results	Pseudo-holomorphic curves
Smooth m	anifolds		

- manifold: second countable Hausdorff topological space M locally homeomorphic to open ball in \mathbb{R}^n
- every p ∈ M has a coordinate chart: p ∈ U ⊂ M open, homeomorphism φ: V → U for V ⊂ ℝⁿ open ball
- smooth manifold: all coordinate transformations from overlapping charts are smooth
- boundary: looks like upper half of \mathbb{R}^n



Introduction 0000000	Hamiltonian mechanics	Sample results	Pseudo-holomorphic curves
Examples of	smooth <i>n</i> -dimen	sional manifold	s

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回■ のへの

- n = 0: isolated points
- n = 1: \mathbb{R} , \mathbb{S}^1
- n=2: \mathbb{R}^2 , \mathbb{S}^2 , \mathbb{T}^2 , Σ_g for $g\geq 1$

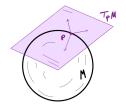
Introduction 0000000	Hamiltonian mechanics 0000	Sample results	Pseudo-holomorphic curves
Examples o	of smooth <i>n</i> -dim	ensional manifol	lds

- n = 0: isolated points
- n = 1: \mathbb{R} , \mathbb{S}^1
- n=2: \mathbb{R}^2 , \mathbb{S}^2 , \mathbb{T}^2 , Σ_g for $g\geq 1$

- $n \ge 3$: complicated; classification for $n \ge 4$ impossible
- $n \geq 3$: \mathbb{R}^n , \mathbb{S}^n , \mathbb{T}^n , \mathbb{RP}^n , \mathbb{CP}^n , { $[z_0: z_1: z_2: z_3: z_4] \in \mathbb{CP}^4 \mid z_0^5 + \cdots + z_4^5 = 0$ } configuration spaces in physics and engineering

Introduction	Hamiltonian mechanics	Sample results	Pseudo-holomorphic curves
0000000	0000	0000	
How to m	easure area on a 2	-manifold?	

- locally: integrate density function
- globally: use a differential 2-form
- each p ∈ M has tangent space T_pM, n-dimensional ℝ-vector space
- 2-form ω = {ω_p: T_pM × T_pM → ℝ}_{p∈M} ω_p anti-symmetric bilinear, smoothly varying with p



▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで

- area form: each ω_p is non-degenerate
- symplectic 2-manifold: M plus choice of area form

Introduction	Hamiltonian mechanics	Sample results	Pseudo-holomorphic curves
00000€0	0000	0000	
Symplect	ic manifolds		

Definition

A symplectic manifold (M, ω) is a smooth manifold M together with a closed non-degenerate 2-form ω .

- equivalently: atlas of **Darboux charts** $(x_1, y_1, \ldots, x_n, y_n)$ in which ω looks like $\omega_0 = \sum_{i=1}^n dx^i \wedge dy^i$
- geometrically: symp. structure = signed area of closed curves

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 γ embedded closed curve in ℝ²
 → A(γ) signed area of enclosed disc

Introduction	Hamiltonian mechanics	Sample results	Pseudo-holomorphic curves
00000●0	0000	0000	
Symplecti	c manifolds		

Definition

A symplectic manifold (M, ω) is a smooth manifold M together with a closed non-degenerate 2-form ω .

- equivalently: atlas of **Darboux charts** $(x_1, y_1, \ldots, x_n, y_n)$ in which ω looks like $\omega_0 = \sum_{i=1}^n dx^i \wedge dy^i$
- geometrically: symp. structure = signed area of closed curves
- γ embedded closed curve in \mathbb{R}^2 $\rightarrow A(\gamma)$ signed area of enclosed disc

$$(+) (\circ) \rightarrow (\circ) \rightarrow (\circ) \circ$$

• γ any oriented closed piece-wise smooth curve: decompose into closed embedded pieces

Pictures taken from Schlenk, Symplectic embedding problems old and new (2017).

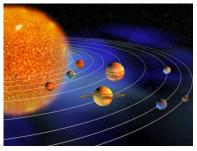
Introduction 000000	Hamiltonian mechanics 0000	Sample results	Pseudo-holomorphic curves
Symplecti	manifolds (cont)		

- standard symplectic structure on \mathbb{R}^{2n} : map $\gamma \to A(\gamma) = A(\gamma_1) + \cdots + A(\gamma_n)$, where $\gamma = (\gamma_1, \dots, \gamma_n)$ any closed oriented curve
- symplectic structure on *M* is an atlas whose transition functions preserve signed area

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで

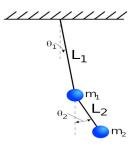
Motivation:	Hamiltonian me	echanics	
Introduction 0000000	Hamiltonian mechanics ●000	Sample results	Pseudo-holomorphic curves

Introduction Hamiltonian mechanics Sample results Pseudo-holomorp 0000000 000 0000 0000000	hic curves



The solar system (simplified).

Source: http://www.scienceclarified.com/ photos/solar-system-2865.jpg



A double pendulum.

Source: By JabberWok, CC BY-SA 3.0, https://commons.wikimedia.org/w/index. php?curid=1601029

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ のQ@

Introduction 0000000	Hamiltonian mechanics 0●00	Sample results 0000	Pseudo-holomorphic curves
Hamiltonian	systems: from	n Newton's to Ha	amilton's
equations			

• system of particles moving with n degrees of freedom

$$q(t) = (q_1(t), \ldots q_n(t))$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ ��

- forces are derived from a **potential** V(q) by $F(q) = -\nabla V(q)$
- Newton's second law states $m_i \ddot{q}_j = -\frac{\partial V}{\partial q_i}$

Introduction 0000000	Hamiltonian mechanics 0●00	Sample results	Pseudo-holomorphic curves
Hamiltonian	systems: from	Newton's to Har	nilton's
equations			

• system of particles moving with n degrees of freedom

$$q(t) = (q_1(t), \ldots q_n(t))$$

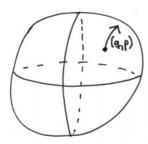
- forces are derived from a **potential** V(q) by $F(q) = -\nabla V(q)$
- Newton's second law states $m_i \ddot{q}_j = -\frac{\partial V}{\partial q_i}$
- Hamilton: consider momenta $p_j := m_j \dot{q}_j$
- total energy defines the Hamiltonian function

$$H \colon \mathbb{R}^{2n} \to \mathbb{R}, \quad (q, p) \mapsto \sum_{\substack{j=1 \ kinetic energy}}^{n} \frac{p_j^2}{2m_j} + \underbrace{V(q)}_{\text{potential forces}}$$

Newton's equations become Hamilton's equations

$$\dot{q}_j = \frac{\partial H}{\partial p_j}$$
 and $\dot{p}_j = -\frac{\partial H}{\partial q_j}$, for $j = 1, \dots, n$ (H)

- key insight: regard (q(t), p(t)) as trajectory in phase space ℝ²ⁿ = T*ℝⁿ
- double pendulum: rigid arms mean $q(t) = (q_1(t), q_2(t)) \in \mathbb{T}^2$, phase space is cotangent bundle $\mathcal{T}^*\mathbb{T}^2$
- for systems with constraints, treat (q, p) as local coordinates of a point moving in a manifold



Fact

A smooth 2n-dimensional manifold it is covered by coordinate charts $(q_1, p_1, \ldots, q_n, p_n)$ such that for all smooth $H: M \to \mathbb{R}$, all coordinate changes preserve the form of (H) iff it is symplectic.

Hamilton'	s equation in symm	lectic manifold	łc
0000000	0000	0000	000000
Introduction	Hamiltonian mechanics	Sample results	Pseudo-holomorphic curves

Definition

For (M, ω) symplectic, $H \colon \mathbb{R} \times M \to \mathbb{R}$ smooth, the **Hamiltonian** vector field X_{H_t} of H is defined by $\omega(X_{H_t}, \cdot) = -dH(t, \cdot)$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Exercise

Solutions (q, p) of (H) are the integral curves of X_{H_t} .

Introduction	Hamiltonian mechanics	Sample results	Pseudo-holomorphic curves
0000000	0000	●000	
Sample theor	ems I: periodic (orbits of dynami	cal systems

Arnold conjecture

If *M* is a closed* symplectic manifold and $H: \mathbb{S}^1 \times M \to \mathbb{R}$ smooth and non-degenerate, then

1-periodic orbits of
$$X_H \ge \sum_{i=1}^n b_i(M)$$
,

where $b_i(M) := \operatorname{rk} H_i(M)$ is the *i*-th Betti number of *M*.

(Almost the) Conley conjecture

M is a closed symplectic manifold with e.g. $\pi_2(M) = 0$. $H: \mathbb{S}^1 \times M \to \mathbb{R}$ is smooth and non-degenerate, X_H has infinitely many simple orbits of integer period.

Sample the	orems II: sympled	tic fillings	
Introduction 0000000	Hamiltonian mechanics 0000	Sample results	Pseudo-holomorphic curves

Definition

A smooth filling of a smooth manifold M is a compact manifold N with $\partial N \cong M$.

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨヨ のへで

not always possible (\mathbb{CP}^2 has no smooth filling), but understood (bordism theory, 1960s)

Introduction	Hamiltonian mechanics	Sample results	Pseudo-holomorphic curves
0000000	0000	○●○○	
Sample theo	rems II: symplec	tic fillings	

Definition

A **smooth filling** of a smooth manifold M is a compact manifold N with $\partial N \cong M$.

not always possible (\mathbb{CP}^2 has no smooth filling), but understood (bordism theory, 1960s)

Definition

A contact manifold $(M^{2n-1}, \xi = \ker \alpha)$ is a smooth manifold M together with a choice of 1-form α s.t. $\alpha \wedge d\alpha^{n-1} \neq 0$.

Template definition

A symplectic filling of (M, ξ) is a compact symplectic manifold (W, ω) with $\partial W \cong (M, \xi)$.

Introduction	Hamiltonian mechanics	Sample results	Pseudo-holomorphic curves
0000000	0000	00●0	
Sample theo	rem II: symplectic	fillings (cont.)	

Template definition

A symplectic filling of (M, ξ) is a compact symplectic manifold (W, ω) with $\partial W \cong (M, \xi)$.

Definition

An exact symplectic filling of (M, ξ) is a compact symplectic manifold $(W, \omega = d\lambda)$ s.t. $\partial W \cong (M, \xi)$ and the vector field X induced by $\iota_X \omega = \lambda$ points outwards along ∂W .

Theorem (Zhou '20,'22)

If $n \ge 3$ and $n \ne 4$, $(\mathbb{RP}^{2n-1}, \xi_{std})$ has no exact symplectic filling.

Underlying	naradigm: s	mplectic invariants	:
Introduction	Hamiltonian mechanic	Sample results	Pseudo-holomorphic curves
0000000	0000	000●	

- Arnold, Conley conjecture: use Hamiltonian Floer homology
- (M, ω) symplectic \rightarrow homology groups $HF_*(M)$, generated by 1-periodic Hamiltonian orbits
- Arnold conjecture: bound # orbits via rk $HF_*(M)$
- Conley conjecture: pass to higher iterates
- Zhou's theorem: use more advanced invariant to exclude hypothetical filling (action-filtered positive symplectic homology)

Introduction	Hamiltonian mechanics	Sample results	Pseudo-holomorphic curves
0000000	0000		•000000
D	1.1		

Pseudo-holomorphic curves

Definition

An **almost complex structure** on a smooth manifold M is a collection of maps $J_p: T_pM \to T_pM$ with $J_p^2 = -$ id, smoothly varying in p.

Theorem

Every symplectic manifold admits an almost complex structure.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ ��

intuition: J is an auxiliary object

Introduction	Hamiltonian mechanics	Sample results	Pseudo-holomorphic curves
0000000	0000		0●00000
Pseudo-h	olomorphic curves		

Definition

A **Riemann surface** is a smooth surface with a choice of almost complex structure.

Fact

If (Σ, j) is a Riemann surface and Σ is closed, then $(\Sigma, j) \cong (\Sigma_g, j')$ for some $g \ge 0$. We call g the **genus** of Σ .

Definition

A closed **pseudo-holomorphic curve** is a smooth map $u: (\Sigma, j) \rightarrow (M, J)$ with $J \circ du = du \circ j$, where (Σ, j) is a closed Riemann surface and (M, J) an almost complex manifold.

Moduli spa	ace of holomorphi		
Introduction 0000000	Hamiltonian mechanics	Sample results	Pseudo-holomorphic curves

given: (M, ω) symplectic, almost complex structure J on M for $g \ge 0$ and $A \in H_2(M)$, consider the **moduli space** of holomorphic curves

$$\mathcal{M}_g(A,J) := \{u \colon (\Sigma,j) o (M,J) \ | \ \mathsf{u} \ \mathsf{ps.-holo}; \Sigma \cong \Sigma_g, u_*[\Sigma] = A \}/_{\sim}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Wishful thinking

 $\mathcal{M}_g(A, J)$ is a compact smooth manifold (and finite-dimensional).

Understandin	g the moduli space	e of holomorph	ic curves
Introduction	Hamiltonian mechanics	Sample results	Pseudo-holomorphic curves
0000000	0000	0000	

Wishful thinking

 $\mathcal{M}_g(A, J)$ is a compact smooth manifold (and finite-dimensional).

- rephrase: u: (Σ, j) → (M, J) is J-holomorphic iff J ∘ du ∘ j = −du iff du + J ∘ du ∘ j = 0
- so: $\mathcal{M}_g(A,J)$ is the zero set of $\Phi \colon (u,J) \mapsto du + J \circ du \circ j$

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨヨ のへで

Introduction	Hamiltonian mechanics	Sample results	Pseudo-holomorphic curves
0000000	0000	0000	000●000
Understandir	ng the moduli spac	e of holomorph	ic curves

Wishful thinking

 $\mathcal{M}_g(A, J)$ is a compact smooth manifold (and finite-dimensional).

- rephrase: u: (Σ, j) → (M, J) is J-holomorphic iff J ∘ du ∘ j = −du iff du + J ∘ du ∘ j = 0
- so: $\mathcal{M}_g(A,J)$ is the zero set of $\Phi \colon (u,J) \mapsto du + J \circ du \circ j$

Finite-dimensional Implicit function theorem

 $E \to B$ smooth vector bundle, $s: B \to E$ smooth section transverse to the zero section. Then $s^{-1}(0) \subset B$ is a smooth submanifold.

domain of Φ is $C^{\infty}(\Sigma, M) \times \mathcal{J}(M, \omega)$, where $\mathcal{J}(M, \omega)$ is the space of all compatible almost complex structures

Introduction	Hamiltonian mechanics	Sample results	Pseudo-holomorphic curves	
0000000	0000		0000●00	
Infinite-dimensional complications				

 $\mathcal{M}_g(A, J)$ is the zero set of $\Phi \colon C^{\infty}(\Sigma, M) \times \mathcal{J}(M, \omega) \to \dots$, $(u, J) \mapsto du + J \circ du \circ j$

▲□▶▲□▶▲≡▶▲≡▶ Ξ|= めぬ⊙

 linearisation of section has a bounded inverse: ok, dΦ is a Fredholm operator

Introduction	Hamiltonian mechanics	Sample results	Pseudo-holomorphic curves	
0000000	0000		0000●00	
Infinite-dimensional complications				

 $\mathcal{M}_g(A, J)$ is the zero set of $\Phi \colon C^{\infty}(\Sigma, M) \times \mathcal{J}(M, \omega) \to \dots$, $(u, J) \mapsto du + J \circ du \circ j$

- linearisation of section has a bounded inverse: ok, dΦ is a Fredholm operator
- domain must be a Banach manifold: but C[∞](Σ, M) is not complete!
- solution: extend Φ to a larger domain,
 e.g. Sobolev spaces W^{k,p}(Σ, M) for kp > 2
- elliptic regularity: extension has same zero set

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで

M_g(A, J) is not compact, but compactifiable: require compatible *J* (i.e. ω(·, *J*·) Riemannian metric)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- $\mathcal{M}_g(A, J)$ is not compact, but compactifiable: require compatible J (i.e. $\omega(\cdot, J \cdot)$ Riemannian metric)
- transversality failure: for some J, $M_g(A, J)$ is not a manifold best case: holds for "generic" J

• more generally: transversality doesn't like symmetry e.g. multiply covered curves (or external group action)

Theorem

For "almost all" compatible J, $\mathcal{M}_{g}^{*}(A, J)$ is a compactifiable smooth manifold of dimension $(\frac{\dim M}{2} - 3)(2 - 2g) + 2\langle c_{1}(TM), A \rangle$.

Introduction	Hamiltonian mechanics	Sample results	Pseudo-holomorphic curves
0000000	0000		000000●
Summary			

- Symplectic manifolds arise when describing mechanical systems.
- Periodic orbits of Hamiltonian systems can be understood using symplectic invariants.

These invariants are defined using moduli spaces of pseudo-holomorphic curves.

Introduction	Hamiltonian mechanics	Sample results	Pseudo-holomorphic curves
0000000	0000		000000●
Summarv			

- **9** Symplectic manifolds arise when describing mechanical systems.
- Periodic orbits of Hamiltonian systems can be understood using symplectic invariants.

These invariants are defined using moduli spaces of pseudo-holomorphic curves.

Thanks for listening! Any questions?

- no full answer known!
- necessary conditions
 - even dimension, orientable
 - ∃ (compatible) almost complex structure
 - if compact: $H^{2i}(M) \neq 0$ for $0 < 2i < \dim(M)$
 - additional conditions on dimension 4

Example

Sphere \mathbb{S}^n is **not** symplectic for n > 2.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで

given (M, ω) closed*; $H \colon \mathbb{S}^1 \times M \to \mathbb{R}$ smooth non-degenerate

- $CF_k(M)$ is generated by 1-periodic orbits with index k
- in particular: #1-periodic orbits $\geq \sum_k \operatorname{rk} HF_k(M)$
- Morse theory: $\sum_k \operatorname{rk} H_k(M) \ge \sum_{i=0}^{2n} \operatorname{rk} H_k(M)$

Theorem

For each k, there is an isomorphism $HF_k(M) \cong H_{2n-k}(M)$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

given: (M, ω) closed* symplectic manifold; $H: \mathbb{S}^1 \times M \to \mathbb{R}$ smooth, non-degenerate

- Floer chain complex (CF_{*}(M, ω), ∂), Hamiltonian Floer homology HF(M, ω) = H_{*}(CF_{*}(M, ω), ∂)
- $CF_*(M)$ generated by 1-periodic orbits of X_H
- grading by Conley-Zehnder index
- differential counts finite energy **Floer cylinders** connecting two 1-periodic orbits
- show: well-defined; independent of H

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・