

[Introduction](#page-1-0) [Hamiltonian mechanics](#page-11-0) [Sample results](#page-17-0) [Pseudo-holomorphic curves](#page-22-0)

A glimpse at symplectic geometry and pseudo-holomorphic curves

Michael B. Rothgang (he/him)

Symplectic geometry group Humboldt-Universität zu Berlin

K ロ ▶ K 何 ▶ K 로 ▶ K 로 ▶ 그리도 19 Q @

European Research Council Established by the European Commissio

BMS-BGSMath Junior Meeting September 7, 2022

Question 1: dynamical systems

What can we say about periodic orbits of a mechanical system (e.g. double pendulum, the solar system)?

Question 2: symplectic fillings

When is a smooth manifold the boundary of a compact manifold?

KEL KALK KEL KEL EN ARA

Question 3: moduli spaces

What does the solution space to an elliptic PDE look like?

K ロ K K @ K K 할 K K 할 K (할 K) 할 데 () 이 Q (V

K ロ K K 伊 K K ミ K K ミ K ミ ミ ヨ つ Q Q Q

surface of a potato is a manifold: locally looks like a disk

• manifold: second countable Hausdorff topological space M locally homeomorphic to open ball in \mathbb{R}^n

KID KAR KE KE KE HE YO

- every $p \in M$ has a coordinate chart: $p \in U \subset M$ open, homeomorphism $\phi \colon V \to U$ for $V \subset \mathbb{R}^n$ open ball
- smooth manifold: all coordinate transformations from overlapping charts are smooth
- boundary: looks like upper half of \mathbb{R}^n

Picture courtesy of Dominik Gutwein.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ [할 바) 9 Q @

- \bullet $n = 0$: isolated points
- $n=1: R, S¹$
- $n=2\colon\thinspace\mathbb{R}^2$, \mathbb{S}^2 , \mathbb{T}^2 , $\mathsf{\Sigma}_\mathcal{g}$ for $\mathcal{g}\geq 1$

$$
\text{C.}\quad \text{C
$$

- \bullet $n = 0$: isolated points
- $n=1: R, S¹$
- $n=2\colon\thinspace\mathbb{R}^2$, \mathbb{S}^2 , \mathbb{T}^2 , $\mathsf{\Sigma}_\mathcal{g}$ for $\mathcal{g}\geq 1$

• $n > 3$: complicated; classification for $n > 4$ impossible

K ロ ▶ K 何 ▶ K 로 ▶ K 로 ▶ 그리도 19 Q @

 $n \geq 3$: \mathbb{R}^n , \mathbb{S}^n , \mathbb{T}^n , \mathbb{RP}^n , \mathbb{CP}^n , $\{ [z_0 : z_1 : z_2 : z_3 : z_4] \in \mathbb{CP}^4 \mid z_0^5 + \cdots + z_4^5 = 0 \}$ configuration spaces in physics and engineering

- locally: integrate density function
- globally: use a differential 2-form
- **e** each $p \in M$ has **tangent space** T_pM , n -dimensional \mathbb{R} -vector space
- 2-form $\omega = {\{\omega_{p}: \mathcal{T}_{p}M \times \mathcal{T}_{p}M \rightarrow \mathbb{R}\}}_{p \in M}$ *ω*^p anti-symmetric bilinear, smoothly varying with p

K ロ ▶ K 何 ▶ K 로 ▶ K 로 ▶ 그러도 19 Q Q

- **area form**: each ω_p is non-degenerate
- **symplectic** 2**-manifold**: M plus choice of area form

Definition

A **symplectic manifold** (M, ω) is a smooth manifold M together with a closed non-degenerate 2-form *ω*.

- equivalently: atlas of **Darboux charts** $(x_1, y_1, \ldots, x_n, y_n)$ in which ω looks like $\omega_0 = \sum_{i=1}^n dx^i \wedge dy^i$
- **•** geometrically: symp. structure $=$ signed area of closed curves

KID KAR KE KE KE HE YO

 γ embedded closed curve in \mathbb{R}^2 \rightarrow A(γ) signed area of enclosed disc

Definition

A **symplectic manifold** (M, ω) is a smooth manifold M together with a closed non-degenerate 2-form *ω*.

- equivalently: atlas of **Darboux charts** $(x_1, y_1, \ldots, x_n, y_n)$ in which ω looks like $\omega_0 = \sum_{i=1}^n dx^i \wedge dy^i$
- geometrically: symp. structure $=$ signed area of closed curves
- γ embedded closed curve in \mathbb{R}^2 \rightarrow A(γ) signed area of enclosed disc

$$
\textcolor{blue}{\bigodot}\textcolor{blue}{\bigodot}\textcolor{blue}{\bigodot}-\textcolor{blue}{\bigodot}\textcolor{blue}{\bigodot}-\textcolor{blue}{\bigodot}\textcolor{blue}{\bigodot}\textcolor{blue}{\circ}
$$

• γ any oriented closed piece-wise smooth curve: decompose into closed embedded pieces

Pictures taken from Schlenk, Symplectic embedding problems old and new ([201](#page-8-0)7[\).](#page-10-0)
 \Box

- $\sf standard$ symplectic structure on \mathbb{R}^{2n} : map $\gamma \to A(\gamma) = A(\gamma_1) + \cdots + A(\gamma_n)$, where $\gamma = (\gamma_1, \ldots, \gamma_n)$ any closed oriented curve
- \bullet symplectic structure on M is an atlas whose transition functions preserve signed area

KID KAR KE KE KE HE YO

メロトメタトメミトメミト 毛性 のんぺ

The solar system (simplified).

Source: [http://www.scienceclarified.com/](http://www.scienceclarified.com/photos/solar-system-2865.jpg) [photos/solar-system-2865.jpg](http://www.scienceclarified.com/photos/solar-system-2865.jpg)

A double pendulum.

Source: By JabberWok, CC BY-SA 3.0, [https://commons.wikimedia.org/w/index.](https://commons.wikimedia.org/w/index.php?curid=1601029) [php?curid=1601029](https://commons.wikimedia.org/w/index.php?curid=1601029)

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ [활]할 게 이익어

• system of particles moving with n degrees of freedom

$$
q(t)=(q_1(t),\ldots q_n(t))
$$

KID KAR KE KE KE HE YO

- forces are derived from a **potential** $V(q)$ by $F(q) = -\nabla V(q)$
- Newton's second law states $m_i \ddot{q}_j = -\frac{\partial V}{\partial q_i}$ *∂*q^j

• system of particles moving with n degrees of freedom

$$
q(t)=(q_1(t),\ldots q_n(t))
$$

- forces are derived from a **potential** $V(q)$ by $F(q) = -\nabla V(q)$
- Newton's second law states $m_i \ddot{q}_j = -\frac{\partial V}{\partial q_i}$ *∂*q^j
- Hamilton: consider momenta $p_j:=m_j\dot{q}_j$
- **•** total energy defines the Hamiltonian function

$$
H: \mathbb{R}^{2n} \to \mathbb{R}, \quad (q, p) \mapsto \sum_{j=1}^{n} \frac{p_j^2}{2m_j} + \frac{V(q)}{\text{potential forces}}
$$

Newton's equations become **Hamilton's equations**

$$
\dot{q}_j = \frac{\partial H}{\partial p_j}
$$
 and $\dot{p}_j = -\frac{\partial H}{\partial q_j}$, for $j = 1, ..., n$ (H)

- key insight: regard $(q(t), p(t))$ as trajectory in **phase space** $\mathbb{R}^{2n} = \mathcal{T}^*\mathbb{R}^n$
- **o** double pendulum: rigid arms mean $q(t)=(q_1(t),q_2(t))\in\mathbb{T}^2$, phase space is cotangent bundle $\, T^* \mathbb{T}^2$
- for systems with constraints, treat (q, p) as **local coordinates** of a point moving in a manifold

Fact

A smooth 2n-dimensional manifold it is covered by coordinate charts $(q_1, p_1, \ldots, q_n, p_n)$ such that for all smooth $H: M \to \mathbb{R}$, all coordinate changes preserve the form of (H) iff it is symplectic.

Definition

For (M, ω) symplectic, $H: \mathbb{R} \times M \to \mathbb{R}$ smooth, the **Hamiltonian vector field** X_{H_t} of H is defined by $\omega(X_{H_t},\cdot) = -dH(t,\cdot)$.

KID KAR KE KE KE HE YO

Exercise

Solutions (q, p) of (H) are the integral curves of $X_{H_t}.$

Arnold conjecture

If M is a closed* symplectic manifold and $H\colon \mathbb{S}^1\times M\to \mathbb{R}$ smooth and non-degenerate, then

1-periodic orbits of
$$
X_H \ge \sum_{i=1}^n b_i(M)
$$
,

where $b_i(M) := \text{rk } H_i(M)$ is the *i*-th Betti number of M.

(Almost the) Conley conjecture

M is a closed symplectic manifold with e.g. $\pi_2(M) = 0$. $H\colon \mathbb{S}^1\times M\to \mathbb{R}$ is smooth and non-degenerate, X_H has infinitely many simple orbits of integer period.

Definition

A **smooth filling** of a smooth manifold M is a compact manifold N with $\partial N \cong M$.

KID KAR KE KE KE HE YO

not always possible $(\mathbb{CP}^2$ has no smooth filling), but understood (bordism theory, 1960s)

Definition

A **smooth filling** of a smooth manifold M is a compact manifold N with $\partial N \cong M$.

not always possible $(\mathbb{CP}^2$ has no smooth filling), but understood (bordism theory, 1960s)

Definition

 $\mathsf A$ $\mathsf {contact}\ \mathsf {manifold}\ \left(M^{2n-1},\xi=\ker \alpha\right)$ is a smooth manifold M together with a choice of 1-form α s.t. $\alpha \wedge d\alpha^{n-1} \neq 0.$

Template definition

A **symplectic filling** of (M*, ξ*) is a compact symplectic manifold $(W, ω)$ with $\partial W ≅ (M, ξ)$.

Template definition

A symplectic filling of (M,ξ) is a compact symplectic manifold $(W, ω)$ with $\partial W \cong (M, ξ)$.

Definition

An **exact symplectic filling** of (M*, ξ*) is a compact symplectic manifold $(W, \omega = d\lambda)$ s.t. $\partial W \cong (M, \xi)$ and the vector field X induced by $\iota_X \omega = \lambda$ points outwards along ∂W .

Theorem (Zhou '20,'22)

If $n \geq 3$ and $n \neq 4$, $(\mathbb{RP}^{2n-1}, \xi_{std})$ has no exact symplectic filling.

KID KAR KE KE KE HE YO

- Arnold, Conley conjecture: use Hamiltonian Floer homology
- \bullet (*M*, ω) symplectic \rightarrow homology groups $HF_*(M)$, generated by 1-periodic Hamiltonian orbits
- Arnold conjecture: bound $#$ orbits via rk $HF_*(M)$
- Conley conjecture: pass to higher iterates
- Zhou's theorem: use more advanced invariant to exclude hypothetical filling (action-filtered positive symplectic homology)

KEL KALK KEL KEL EN ARA

Definition

An **almost complex structure** on a smooth manifold M is a collection of maps $J_{\rho}\colon\thinspace T_{\rho}M\to T_{\rho}M$ with $J_{\rho}^2=-$ id, smoothly varying in p.

Theorem

Every symplectic manifold admits an almost complex structure.

KID KAR KE KE KE HE YO

intuition: J is an auxiliary object

Definition

A **Riemann surface** is a smooth surface with a choice of almost complex structure.

Fact

If (Σ, j) is a Riemann surface and Σ is closed, then $(\Sigma, j) \cong (\Sigma_g, j')$ for some $g > 0$. We call g the **genus** of Σ .

Definition

A closed **pseudo-holomorphic curve** is a smooth map u: (Σ, i) → (M, J) with $J \circ du = du \circ i$, where (Σ, i) is a closed Riemann surface and (M*,* J) an almost complex manifold.

given: (M*, ω*) symplectic, almost complex structure J on M for $g \geq 0$ and $A \in H_2(M)$, consider the **moduli space** of holomorphic curves

$$
\mathcal{M}_{g}(A,J):=\{u\colon (\Sigma,j)\to (M,J)\ \mid\ \text{u ps.-holo};\ \Sigma\cong \Sigma_{g},u_{*}[\Sigma]=A\}/_{\sim}
$$

KID KAR KE KE KE HE YO

Wishful thinking

 $M_{\epsilon}(A, J)$ is a compact smooth manifold (and finite-dimensional).

Wishful thinking

 $M_{\varrho}(A,J)$ is a compact smooth manifold (and finite-dimensional).

- rephrase: $u: (\Sigma, j) \to (M, J)$ is *J*-holomorphic iff $J \circ du \circ i = -du$ iff $du + J \circ du \circ i = 0$
- so: $\mathcal{M}_{g}(A, J)$ is the zero set of Φ : $(u, J) \mapsto du + J \circ du \circ j$

KID KAR KE KE KE HE YO

Wishful thinking

 $\mathcal{M}_{\sigma}(A, J)$ is a compact smooth manifold (and finite-dimensional).

- rephrase: $u: (\Sigma, j) \to (M, J)$ is *J*-holomorphic iff $J \circ du \circ i = -du$ iff $du + J \circ du \circ i = 0$
- so: $\mathcal{M}_{\varphi}(A, J)$ is the zero set of Φ : $(u, J) \mapsto du + J \circ du \circ j$

Finite-dimensional Implicit function theorem

 $E \rightarrow B$ smooth vector bundle, $s: B \rightarrow E$ smooth section transverse to the zero section. Then $\mathsf{s}^{-1}(0) \subset B$ is a smooth submanifold.

domain of Φ is $C^{\infty}(\Sigma, M) \times \mathcal{J}(M, \omega)$, where $\mathcal{J}(M, \omega)$ is the space of all compatible almost complex structures

 $\mathcal{M}_{g}(A, J)$ is the zero set of $\Phi: C^{\infty}(\Sigma, M) \times \mathcal{J}(M, \omega) \to \dots$ $(u, J) \mapsto du + J \circ du \circ j$

KO KARA KE KE KE E ARA

. linearisation of section has a bounded inverse: ok, dΦ is a **Fredholm operator**

 $\mathcal{M}_{g}(A, J)$ is the zero set of $\Phi \colon C^{\infty}(\Sigma, M) \times \mathcal{J}(M, \omega) \to \ldots$ $(u, J) \mapsto du + J \circ du \circ j$

- **•** linearisation of section has a bounded inverse: ok, dΦ is a **Fredholm operator**
- domain must be a **Banach manifold**: but $C^{\infty}(\Sigma, M)$ is not complete!
- \bullet solution: extend Φ to a larger domain, e.g. **Sobolev spaces** $W^{k,p}(\Sigma, M)$ for $kp > 2$
- **e** elliptic regularity: extension has same zero set

KEL KALK KEL KEL EN ARA

 \bullet $\mathcal{M}_{g}(A, J)$ is not compact, but compactifiable: require compatible J (i.e. *ω*(·*,* J·) Riemannian metric)

KID KAR KE KE KE HE YO

- \bullet $\mathcal{M}_{\varrho}(A, J)$ is not compact, but compactifiable: require compatible J (i.e. *ω*(·*,* J·) Riemannian metric)
- transversality failure: for some *J*, $\mathcal{M}_{g}(A, J)$ is not a manifold best case: holds for "generic" J

KID KAR KE KE KE HE YO

more generally: transversality doesn't like symmetry e.g. multiply covered curves (or external group action)

Theorem

For "almost all" compatible J, $\mathcal{M}_g^*(A, J)$ is a compactifiable smooth manifold of dimension $\left(\frac{\dim M}{2} - 3\right)\left(2 - 2g\right) + 2\langle c_1(TM), A \rangle$.

- **1** Symplectic manifolds arise when describing mechanical systems.
- 2 Periodic orbits of Hamiltonian systems can be understood using symplectic invariants.

KID KAR KE KE KE HE YO

3 These invariants are defined using moduli spaces of pseudo-holomorphic curves.

- **1** Symplectic manifolds arise when describing mechanical systems.
- 2 Periodic orbits of Hamiltonian systems can be understood using symplectic invariants.

KEL KALK KEL KEL EN ARA

³ These invariants are defined using moduli spaces of pseudo-holomorphic curves.

Thanks for listening! Any questions?

- no full answer known!
- necessary conditions
	- even dimension, orientable
	- ∃ (compatible) almost complex structure
	- if compact: $H^{2i}(M) \neq 0$ for $0 < 2i < \dim(M)$
	- a additional conditions on dimension 4

Example

Sphere \mathbb{S}^n is **not** symplectic for $n > 2$.

K ロ ▶ K 何 ▶ K 로 ▶ K 로 ▶ 그리도 19 Q @

given (M,ω) closed*; $H\colon \mathbb{S}^1\times M\to \mathbb{R}$ smooth non-degenerate

- $CF_k(M)$ is generated by 1-periodic orbits with index k
- in particular: $\#1$ -periodic orbits $\geq \sum_{k}$ rk $HF_{k}(M)$
- Morse theory: \sum_{k} rk $H_k(M) \geq \sum_{i=0}^{2n}$ rk $H_k(M)$

Theorem

For each k, there is an isomorphism $HF_k(M) \cong H_{2n-k}(M)$.

KID KAR KE KE KE HE YO

given: (M,ω) closed* symplectic manifold; $H\colon \mathbb{S}^1\times M\to \mathbb{R}$ smooth, non-degenerate

- **Floer chain complex** (CF∗(M*, ω*)*, ∂*), Hamiltonian Floer homology HF(M*, ω*) = H∗(CF∗(M*, ω*)*, ∂*)
- $CF_*(M)$ generated by 1-periodic orbits of X_H
- **•** grading by Conley-Zehnder index
- **o** differential counts finite energy **Floer cylinders** connecting two 1-periodic orbits
- \bullet show: well-defined; independent of H

KID KAR KE KE KE HE YO