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Three motivating questions

Question 1: dynamical systems
What can we say about periodic orbits of a mechanical system
(e.g. double pendulum, the solar system)?

Question 2: symplectic fillings
When is a smooth manifold the boundary of a compact manifold?

Question 3: moduli spaces
What does the solution space to an elliptic PDE look like?
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Manifolds

surface of a potato is a manifold: locally looks like a disk
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Smooth manifolds
manifold: second countable Hausdorff topological space M locally
homeomorphic to open ball in Rn

every p ∈ M has a coordinate chart: p ∈ U ⊂ M open,
homeomorphism φ : V → U for V ⊂ Rn open ball
smooth manifold: all coordinate transformations from
overlapping charts are smooth
boundary: looks like upper half of Rn

Picture courtesy of Dominik Gutwein.
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Examples of smooth n-dimensional manifolds

n = 0: isolated points
n = 1: R, S1

n = 2: R2, S2, T2, Σg for g ≥ 1

n ≥ 3: complicated; classification for n ≥ 4 impossible
n ≥ 3: Rn, Sn, Tn, RPn, CPn,
{[z0 : z1 : z2 : z3 : z4] ∈ CP4 | z5

0 + · · ·+ z5
4 = 0}

configuration spaces in physics and engineering
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How to measure area on a 2-manifold?

locally: integrate density function
globally: use a differential 2-form

each p ∈ M has tangent space TpM,
n-dimensional R-vector space
2-form ω = {ωp : TpM × TpM → R}p∈M
ωp anti-symmetric bilinear,
smoothly varying with p
area form: each ωp is non-degenerate
symplectic 2-manifold: M plus choice of area form
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Symplectic manifolds

Definition
A symplectic manifold (M, ω) is a smooth manifold M together
with a closed non-degenerate 2-form ω.

equivalently: atlas of Darboux charts (x1, y1, . . . , xn, yn)
in which ω looks like ω0 =

∑n
i=1 dx i ∧ dy i

geometrically: symp. structure = signed area of closed curves
γ embedded closed curve in R2

→ A(γ) signed area of enclosed disc

γ any oriented closed piece-wise smooth curve:
decompose into closed embedded pieces

Pictures taken from Schlenk, Symplectic embedding problems old and new (2017).
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Symplectic manifolds (cont.)

standard symplectic structure on R2n:
map γ → A(γ) = A(γ1) + · · ·+ A(γn),
where γ = (γ1, . . . , γn) any closed oriented curve
symplectic structure on M is an atlas whose transition
functions preserve signed area
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Motivation: Hamiltonian mechanics

The solar system (simplified).
Source: http://www.scienceclarified.com/

photos/solar-system-2865.jpg

A double pendulum.

Source: By JabberWok, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.

php?curid=1601029

http://www.scienceclarified.com/photos/solar-system-2865.jpg
http://www.scienceclarified.com/photos/solar-system-2865.jpg
https://commons.wikimedia.org/w/index.php?curid=1601029
https://commons.wikimedia.org/w/index.php?curid=1601029
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Hamiltonian systems: from Newton’s to Hamilton’s
equations

system of particles moving with n degrees of freedom

q(t) = (q1(t), . . . qn(t))

forces are derived from a potential V (q) by F (q) = −∇V (q)
Newton’s second law states mi q̈j = −∂V

∂qj

Hamilton: consider momenta pj := mj q̇j
total energy defines the Hamiltonian function

H : R2n → R, (q, p) 7→
n∑

j=1

p2
j

2mj

kinetic energy

+ V (q)
potential forces

Newton’s equations become Hamilton’s equations

q̇j = ∂H
∂pj

and ṗj = −∂H
∂qj

, for j = 1, . . . n (H)
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Hamilton’s equations on a manifold: symplectic manifolds

key insight: regard (q(t), p(t)) as trajectory
in phase space R2n = T ∗Rn

double pendulum: rigid arms mean
q(t) = (q1(t), q2(t)) ∈ T2,
phase space is cotangent bundle T ∗T2

for systems with constraints, treat (q, p)
as local coordinates of a point
moving in a manifold

Fact
A smooth 2n-dimensional manifold it is covered by coordinate charts
(q1, p1, . . . , qn, pn) such that for all smooth H : M → R, all
coordinate changes preserve the form of (H) iff it is symplectic.
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Hamilton’s equation in symplectic manifolds

Definition
For (M, ω) symplectic, H : R×M → R smooth, the Hamiltonian
vector field XHt of H is defined by ω(XHt , ·) = −dH(t, ·).

Exercise
Solutions (q, p) of (H) are the integral curves of XHt .
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Sample theorems I: periodic orbits of dynamical systems

Arnold conjecture
If M is a closed* symplectic manifold and H : S1 ×M → R smooth
and non-degenerate, then

# 1-periodic orbits of XH ≥
n∑

i=1
bi (M),

where bi (M) := rkHi (M) is the i-th Betti number of M.

(Almost the) Conley conjecture
M is a closed symplectic manifold with e.g. π2(M) = 0.
H : S1 ×M → R is smooth and non-degenerate, XH has infinitely
many simple orbits of integer period.
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Sample theorems II: symplectic fillings

Definition
A smooth filling of a smooth manifold M is a compact manifold N
with ∂N ∼= M.

not always possible (CP2 has no smooth filling),
but understood (bordism theory, 1960s)

Definition
A contact manifold (M2n−1, ξ = kerα) is a smooth manifold M
together with a choice of 1-form α s.t. α ∧ dαn−1 6= 0.

Template definition
A symplectic filling of (M, ξ) is a compact symplectic manifold
(W , ω) with ∂W ∼= (M, ξ).
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Sample theorem II: symplectic fillings (cont.)

Template definition
A symplectic filling of (M, ξ) is a compact symplectic manifold
(W , ω) with ∂W ∼= (M, ξ).

Definition
An exact symplectic filling of (M, ξ) is a compact symplectic
manifold (W , ω = dλ) s.t. ∂W ∼= (M, ξ) and the vector field X
induced by ιXω = λ points outwards along ∂W .

Theorem (Zhou ’20,’22)
If n ≥ 3 and n 6= 4, (RP2n−1, ξstd) has no exact symplectic filling.
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Underlying paradigm: symplectic invariants

Arnold, Conley conjecture: use Hamiltonian Floer homology
(M, ω) symplectic → homology groups HF∗(M),
generated by 1-periodic Hamiltonian orbits
Arnold conjecture: bound # orbits via rkHF∗(M)
Conley conjecture: pass to higher iterates
Zhou’s theorem: use more advanced invariant to exclude
hypothetical filling (action-filtered positive symplectic homology)
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Pseudo-holomorphic curves

Definition
An almost complex structure on a smooth manifold M is a
collection of maps Jp : TpM → TpM with J2

p = − id, smoothly
varying in p.

Theorem
Every symplectic manifold admits an almost complex structure.

intuition: J is an auxiliary object
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Pseudo-holomorphic curves

Definition
A Riemann surface is a smooth surface with a choice of almost
complex structure.

Fact
If (Σ, j) is a Riemann surface and Σ is closed, then (Σ, j) ∼= (Σg , j ′)
for some g ≥ 0. We call g the genus of Σ.

Definition
A closed pseudo-holomorphic curve is a smooth map
u : (Σ, j)→ (M, J) with J ◦ du = du ◦ j , where (Σ, j) is a closed
Riemann surface and (M, J) an almost complex manifold.
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Moduli space of holomorphic curves

given: (M, ω) symplectic, almost complex structure J on M
for g ≥ 0 and A ∈ H2(M), consider the moduli space of
holomorphic curves

Mg (A, J) := {u : (Σ, j)→ (M, J) | u ps.-holo; Σ ∼= Σg , u∗[Σ] = A}/∼

Wishful thinking
Mg (A, J) is a compact smooth manifold (and finite-dimensional).
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Understanding the moduli space of holomorphic curves

Wishful thinking
Mg (A, J) is a compact smooth manifold (and finite-dimensional).

rephrase: u : (Σ, j)→ (M, J) is J-holomorphic iff
J ◦ du ◦ j = −du iff du + J ◦ du ◦ j = 0
so: Mg (A, J) is the zero set of Φ: (u, J) 7→ du + J ◦ du ◦ j

Finite-dimensional Implicit function theorem
E → B smooth vector bundle, s : B → E smooth section transverse
to the zero section. Then s−1(0) ⊂ B is a smooth submanifold.

domain of Φ is C∞(Σ,M)× J (M, ω), where J (M, ω) is the space
of all compatible almost complex structures
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Infinite-dimensional complications

Mg (A, J) is the zero set of Φ: C∞(Σ,M)× J (M, ω)→ . . .,
(u, J) 7→ du + J ◦ du ◦ j

linearisation of section has a bounded inverse:
ok, dΦ is a Fredholm operator

domain must be a Banach manifold:
but C∞(Σ,M) is not complete!
solution: extend Φ to a larger domain,
e.g. Sobolev spaces W k,p(Σ,M) for kp > 2
elliptic regularity: extension has same zero set
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Bad news: transversality and compactness

Mg (A, J) is not compact, but compactifiable:
require compatible J (i.e. ω(·, J ·) Riemannian metric)

transversality failure: for some J ,Mg (A, J) is not a manifold
best case: holds for “generic” J
more generally: transversality doesn’t like symmetry
e.g. multiply covered curves (or external group action)

Theorem
For “almost all” compatible J,M∗g (A, J) is a compactifiable
smooth manifold of dimension ( dim M

2 − 3)(2− 2g) + 2〈c1(TM), A〉.
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Summary

1 Symplectic manifolds arise when describing mechanical systems.
2 Periodic orbits of Hamiltonian systems can be understood using

symplectic invariants.
3 These invariants are defined using moduli spaces of

pseudo-holomorphic curves.

Thanks for listening! Any questions?



Introduction Hamiltonian mechanics Sample results Pseudo-holomorphic curves

Summary

1 Symplectic manifolds arise when describing mechanical systems.
2 Periodic orbits of Hamiltonian systems can be understood using

symplectic invariants.
3 These invariants are defined using moduli spaces of

pseudo-holomorphic curves.

Thanks for listening! Any questions?



Which manifolds are symplectic?

no full answer known!
necessary conditions

even dimension, orientable
∃ (compatible) almost complex structure
if compact: H2i (M) 6= 0 for 0 < 2i < dim(M)
additional conditions on dimension 4

Example
Sphere Sn is not symplectic for n > 2.



Proof sketch of Arnold conjecture

given (M, ω) closed*; H : S1 ×M → R smooth non-degenerate
CFk(M) is generated by 1-periodic orbits with index k
in particular: #1-periodic orbits ≥

∑
k rkHFk(M)

Morse theory:
∑

k rkHk(M) ≥
∑2n

i=0 rkHk(M)

Theorem
For each k, there is an isomorphism HFk(M) ∼= H2n−k(M).



Details: Hamiltonian Floer homology

given: (M, ω) closed* symplectic manifold; H : S1 ×M → R
smooth, non-degenerate

Floer chain complex (CF∗(M, ω), ∂),
Hamiltonian Floer homology HF (M, ω) = H∗(CF∗(M, ω), ∂)
CF∗(M) generated by 1-periodic orbits of XH

grading by Conley-Zehnder index

differential counts finite energy Floer cylinders
connecting two 1-periodic orbits
show: well-defined; independent of H
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